
Module 3: Algorithmic self-
assembly

CSE590: Molecular programming and neural
computation. Slides in this module are largely due to
Rebecca Schulman and Erik Winfree.

1

The model consists of a
collection of cells, each in one of
a finite number of states.

A lattice-based model of
computation, where the lattice
can be 1, 2 or any (finite) number
of dimensions.

A cell has a neighborhood -- a finite
set of cells that are defined to be
“adjacent” to it.

The cells evolve -- at each time step,
the cell changes state (or stays the
same) based on the states of its
neighbors.

Cellular automata

A 2d cellular automaton.
Every cell interacts with its
8 neighbors. A cell is either
live (colored) or dead
(blank).

 1. A live cell with 0 neighbors or 1
neighbor dies (“underpopulation”).

2. A cell with 4,5,6,7 or 8 neighbors
dies (“overpopulation”).

3. A live cell with 2-3 neighbors lives.

4. A dead cell with exactly 3
neighbors becomes live.

Conway’s game of life

Block

Beehive

Pulsar

Blinker

Beacon

Glider

Spaceship

Inputs and outputs of cellular
automata are structures

A glider gun

Conway’s game of life can produce
aperiodic patterns

Glider gun logic gates

And it can do logic

A zoom-out of a
Turing machine in action..

Conway’s game of life is Turing
complete

Conway’s game of life can compute anything that a
computer can compute

A 1-dimensional block cellular automaton.

At each time step, the lattice staggers, and
neighbors are above and to the left and right
of the previous step.

The next state is the XOR of the two previous
states.

Sierpinski’s triangle

Sierpinski’s triangle

9

The next state is the XOR of the two previous states.

Each state in the fixed lattice requires knowledge of four surrounding
states.

two inputs

direction of
computation

two outputs

direction of
computation

Yet even with this simple mechanism, block cellular automata are
Turing complete.

Sierpinski’s triangle

Specific labels
for inputs

direction of computation

Specific labels
for outputs

0

1 1

1

Next we’ll introduce the abstract tile assembly model,
where tiles start from a seed, and attach to a growing block.

Computation occurs by adding tiles, which form rows of cells, but it is not
necessary that rows be added one at a time.

Tiles can be added if their strength of attachment is greater than a threshold.
In our case the threshold will be 2.

One can show that this processes simulates the execution of a cellular
automaton.

Block cellular automata with tiles

bond bond
type strength

“0” 1 = weak
“1” 1 = weak
“B” 2 = strong
 0 = null

Growth:
1 strong bond
or
2 weak bonds

inputs

outputs formal tiles may not be rotated

Winfree (1996,1998)

designated seed tile

1
1

1
0 1

1

0
1 0

0

1
1 0

0

0
0 1

B

B
B

1
B B

B

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

1
1

0
1

1
1

1
0 1

1

1
0

B
B

1
B

B

1
B

B

1
B

B

B
1

B B
1

B B
1

B B
1

B

Block cellular automata with tiles

0 1

1 1

0 1

1

1 1

1

Block cellular automata with tiles

DNA tiles are formed from four short, synthetic DNA strands

DNA tiles

DNA tile assembly

DNA tiles will attach to each other via “sticky” ends that
have complementary sequences.

Attachment of a block of the CA lattice <->
attachment of a DNA tile to a crystal of DNA tiles.

The result: we can program a set of “tiles”, make
them out of DNA, then make the assembly we
predict into a real object!

This should only happen if the sticky ends match,
and there are enough sticky ends that this is a
favorable reaction.

DNA tile assembly

seed 1
1

1
0 1

1

0
1 0

0

1
1 0

0

0
0 1

B

B
B

1
B B

B

Simulated assembly of a DNA
Sierpinski triangle

A self-assembled DNA object

¤ Kenichi Fujibayashi, Rizal Hariadi, Sung Ha Park, Erik Winfree, Satoshi Murata (Nano Letters, 2008)

100 nm (atomic force microscope image)

Tile set 2: Binary counter tile set

n
1

1
n n

1

0
c c

0

1
c n

0

0
n B

0
B c

B

B
B

B
seed

Programming self-assembly

Tile set 3: 59 tile types, 28 bond types

Programming self-assembly

¤ Kenichi Fujibayashi, Rizal Hariadi, Sung Ha Park, Erik Winfree, Satoshi Murata (Nano Letters,2008)

100 nm An even number of white dots in each triangle!

Unfortunately, DNA sometimes makes
mistakes

A big challenge in DNA self-assembly is to get DNA to follow instructions:

Error rate in your computer’s logic system 1 in 10^23

Error rate in DNA tile assembly 1 in 10^2!

Unfortunately, DNA sometimes makes
mistakes

¤ Robert Barish, Rebecca Schulman, Paul Rothemund, Erik Winfree (PNAS, 2009)

A single error in a crystal can be
disastrous

Constantin Evans and Erik Winfree, in preparation.

5-bit binary counter

22 tile types, error rate 0.05%

•  Optimized growth conditions
•  Optimized concentrations
•  Optimized labels

1. Designing “robust” tile sets can make it harder for an error to stick.

2. Optimizing physical conditions can improve error rates because
crystallization happens with fewer defects under some physical
conditions than others.

3. Combining both these approaches has allowed us to reach an
error rate of less than 1 in 10^4. How much lower can we go?

?

Current research focuses on how to
make assembly accurate

