
Module 3: Algorithmic self-
assembly 

CSE590: Molecular programming and neural 
computation. Slides in this module are largely due to 
Rebecca Schulman and Erik Winfree. 
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The model consists of a 
collection of cells, each in one of 
a finite number of states. 

A lattice-based model of 
computation, where the lattice 
can be 1, 2 or any (finite) number 
of dimensions. 

A cell has a neighborhood -- a finite 
set of cells that are defined to be 
“adjacent” to it.  

The cells evolve -- at each time step, 
the cell changes state (or stays the 
same) based on the states of its 
neighbors. 

Cellular automata 



A 2d cellular automaton.  
Every cell interacts with its 
8 neighbors. A cell is either 
live (colored) or dead 
(blank). 

 1.  A live cell with 0 neighbors or 1 
neighbor dies (“underpopulation”).   
 

2.  A cell with  4,5,6,7 or 8 neighbors 
dies (“overpopulation”). 

3.  A live cell with 2-3 neighbors lives. 

4.  A dead cell with exactly 3 
neighbors becomes live. 

Conway’s game of life 



Block 

Beehive 

Pulsar 

Blinker 

Beacon 

Glider 

Spaceship 

Inputs and outputs of cellular 
automata are structures 



A glider gun 

Conway’s game of life can produce 
aperiodic patterns 



Glider gun logic gates 

And it can do logic 



A zoom-out of a  
Turing machine in action.. 

Conway’s game of life is Turing 
complete 

Conway’s game of life can compute anything that a 
computer can compute  



A 1-dimensional block cellular automaton. 

At each time step, the lattice staggers, and 
neighbors are above and to the left and right 
of the previous step. 

The next state is the XOR of the two previous 
states. 

Sierpinski’s triangle 



Sierpinski’s triangle 
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The next state is the XOR of the two previous states. 

Each state in the fixed lattice requires knowledge of four surrounding 
states. 

two inputs 

direction of 
computation 

two outputs 

direction of 
computation 

Yet even with this simple mechanism, block cellular automata are 
Turing complete. 

Sierpinski’s triangle 



Specific labels 
for inputs 

direction of computation 

Specific labels 
for outputs 

0 

1 1 

1 

Next we’ll introduce the abstract tile assembly model,  
where tiles start from a seed, and attach to a growing block.  

Computation occurs by adding tiles, which form rows of cells, but it is not 
necessary that rows be added one at a time. 

Tiles can be added if their strength of attachment is greater than a threshold.  
In our case the threshold will be 2. 

One can show that this processes simulates the execution of a cellular 
automaton. 

Block cellular automata with tiles 



bond      bond 
type      strength 
 
“0”   1 = weak 
“1”   1 = weak 
“B”         2 = strong 
   0 = null 

Growth: 
1 strong bond 
or 
2 weak bonds 

inputs 

outputs formal tiles may not be rotated 

Winfree  (1996,1998) 
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Block cellular automata with tiles 
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Block cellular automata with tiles 



DNA tiles are formed from four short, synthetic DNA strands 

DNA tiles 



DNA tile assembly 

DNA tiles will attach to each other via “sticky” ends that 
have complementary sequences. 



Attachment of a block of the CA lattice <-> 
attachment of a DNA tile to a crystal of DNA tiles. 

The result: we can program a set of “tiles”, make 
them out of DNA, then make the assembly we 
predict into a real object! 

This should only happen if the sticky ends match, 
and there are enough sticky ends that this is a 
favorable reaction. 

DNA tile assembly 
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Simulated assembly of a DNA 
Sierpinski triangle 



A self-assembled DNA object 

¤ Kenichi Fujibayashi, Rizal Hariadi, Sung Ha Park, Erik Winfree, Satoshi Murata (Nano Letters, 2008) 

100 nm (atomic force microscope image) 



Tile set 2: Binary counter tile set 
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Programming self-assembly 



Tile set 3: 59 tile types, 28 bond types 

Programming self-assembly 



¤ Kenichi Fujibayashi, Rizal Hariadi, Sung Ha Park, Erik Winfree, Satoshi Murata (Nano Letters,2008) 

100 nm An even number of white dots in each triangle! 

Unfortunately, DNA sometimes makes 
mistakes 



A big challenge in DNA self-assembly is to get DNA to follow instructions:  
 
 
Error rate in your computer’s logic system 1 in 10^23 

Error rate in DNA tile assembly 1 in 10^2! 

Unfortunately, DNA sometimes makes 
mistakes 



¤ Robert Barish, Rebecca Schulman, Paul Rothemund, Erik Winfree  (PNAS, 2009) 

A single error in a crystal can be 
disastrous 



Constantin Evans and Erik Winfree, in preparation. 

5-bit binary counter 

22 tile types, error rate 0.05% 
 
•  Optimized growth conditions 
•  Optimized concentrations 
•  Optimized labels 



1. Designing “robust” tile sets can make it harder for an error to stick. 
 

2. Optimizing physical conditions can improve error rates because 
crystallization happens with fewer defects under some physical 
conditions than others. 

 

3. Combining both these approaches has allowed us to reach an 
error rate of less than 1 in 10^4.  How much lower can we go? 

? 

Current research focuses on how to 
make assembly accurate 


